Abstract

This paper develops an efficient offset-free output feedback predictive control approach to nonlinear processes based on their approximate fuzzy models as well as an integrating disturbance model. The estimated disturbance signals account for all the plant–model mismatch and unmodeled plant disturbances. An augmented piecewise observer, constructed by solving some linear matrix inequalities, is used to estimate the system states and the lumped disturbances. Based on the reference from an online constrained target generator, the fuzzy model predictive control law can be easily obtained by solving a convex semi-definite programming optimization problem subject to several linear matrix inequalities. The resulting closed-loop system is guaranteed to be input-to-state stable even in the presence of observer estimation error. The zero offset output tracking property of the proposed control approach is proved, and subsequently demonstrated by the simulation results on a strongly nonlinear benchmark plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.