Abstract

This paper presents a backstepping-based solution of the output regulation problem for coupled parabolic partial integro-differential equations (PIDEs) with spatially-varying coefficients and distinct diffusion coefficients. The considered setup assumes in-domain as well as boundary disturbances, while the output to be controlled can be defined distributed in-domain, pointwise in-domain or at the boundaries and need not be measured. By assuming a finite-dimensional signal model, which may also be non-diagonalizable, a systematic solution of the output regulation problem is presented by making use of observer-based feedforward control. Existence conditions for the corresponding regulator are formulated in terms of the plant transfer behaviour. For the resulting closed-loop system, exponential stability with a prescribed decay rate is verified. The regulator design for two unstable coupled parabolic PIDEs demonstrates the results of the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call