Abstract
This paper develops systematically the output feedback exponential stabilization for a one-dimensional unstable/anti-stable wave equation where the control boundary suffers from both internal nonlinear uncertainty and external disturbance. Using only two displacement signals, we propose a disturbance estimator that not only can estimate successfully the disturbance in the sense that the error is in L2(0, ∞) but also is free high-gain. With the estimated disturbance, we design a state observer that is exponentially convergent to the state of original system. An observer-based output feedback stabilizing control law is proposed. The disturbance is then canceled in the feedback loop by its approximated value. The closed-loop system is shown to be exponentially stable and it can be guaranteed that all internal signals are uniformly bounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.