Abstract

In this paper, we consider performance output tracking for a boundary controlled one-dimensional wave equation with possibly unknown internal nonlinear uncertainty and external disturbance. We first show that the open-loop system is well-posed and then propose a disturbance estimator. It is shown that the disturbance estimator can estimate successfully the total disturbance that consists of internal uncertainty and external disturbance. An servomechanism based on the estimated total disturbance is then designed. It is shown that the closed-loop system is well-posed. Three control objectives are achieved: (a) the output is tracking the reference signal; (b) all the internal signals are uniformly bounded; (c) the closed-loop system is internally asymptotically stable if both the reference signal and the disturbance vanish or belong to the space H2(0, ∞) and L2(0, ∞), respectively. The unmatched performance output tracking control is first time applied to a system described by the partial differential equation for complete general disturbance rejection and reference tracking purpose. Another key feature of this paper is that we do not use the high-gain to estimate total disturbance for unmatched system. The numerical experiments are carried out to illustrate effectiveness of the proposed control law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call