Abstract
This paper presents the output and delay process analysis of integrated voice/data slotted code division multiple access (CDMA) network systems with random access protocol for packet radio communications. The system model consists of a finite number of users, and each user can be a source of both voice traffic and data traffic. The allocation of codes to voice calls is given priority over that to data packets, while an admission control, which restricts the maximum number of codes available to voice sources, is considered for voice traffic so as not to monopolize the resource. Such codes allocated exclusively to voice calls are called voice codes. In addition, the system monitoring can distinguish between silent and talkspurt periods of voice sources, so that users with data packets can use the voice codes for transmission if the voice sources are silent. A discrete-time Markov process is used to model the system operation, and an exact analysis is presented to derive the moment generating functions of the probability distributions for packet departures of both voice and data traffic and for the data packet delay. For some cases with different numbers of voice codes, numerical results display the correlation coefficient of the voice and data packet departures and the coefficient of variation of the data packet delay as well as average performance measures, such as the throughput, the average delay of data packets, and the average blocking probability of voice calls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.