Abstract

An experimental investigation on effect and mechanism of out-of-plane constraint induced by specimen thickness on local fracture resistance of two cracks (A508 heat-affected-zone (HAZ) crack and A508/Alloy52Mb interface crack) located at the weakest region in an Alloy52M dissimilar metal welded joint (DMWJ) between A508 ferritic steel and 316L stainless steel in nuclear power plants has been carried out. The results show with increasing out-of-plane constraint (specimen thickness), the fracture mechanism of the two cracks changes from ductile fracture through mixed ductile and brittle fracture to brittle fracture, and the corresponding crack growth resistance decreases. The crack growth path in the specimens with different out-of-plane constraints deviates to low-strength material side, and is mainly controlled by local strength mismatch. For accurate and reliable safety design and failure assessment of the DMWJ structures, it needs to consider the constraint effect on local fracture resistance. The new safety design and failure assessment methods incorporating both in-plane and out-of-plane constraint effects need to be developed for the DMWJ structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.