Abstract
Robust adaptive matched filtering (AMF) whereby outlier data vectors are censored from the covariance matrix estimate is considered in a maximum likelihood estimation (MLE) setting. It is known that outlier data vectors whose steering vector is highly correlated with the desired steering vector, can significantly degrade the performance of AMF algorithms such as sample matrix inversion (SMI) or fast maximum likelihood (FML). Four new algorithms that censor outliers are presented which are derived via approximation to the MLE solution. Two algorithms each are related to using the SMI or the FML to estimate the unknown underlying covariance matrix. Results are presented using computer simulations which demonstrate the relative effectiveness of the four algorithms versus each other and also versus the SMI and FML algorithms in the presence of outliers and no outliers. It is shown that one of the censoring algorithms, called the reiterative censored fast maximum likelihood (CFML) technique is significantly superior to the other three censoring methods in stressful outlier scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.