Abstract

It is shown that partial information about the airborne/spacebased (A/S) clutter covariance matrix (CCM) can be used effectively to significantly enhance the convergence performance of a block-processed space/time adaptive processor (STAP) in a clutter and jamming environment. The partial knowledge of the CCM is based upon the simplified general clutter model (GCM) which has been developed by the airborne radar community. A priori knowledge of parameters which should be readily measurable (but not necessarily accurate) by the radar platform associated with this model is assumed. The GCM generates an assumed CCM. The assumed CCM along with exact knowledge of the thermal noise covariance matrix is used to form a maximum likelihood estimate (MLE) of the unknown interference covariance matrix which is used by the STAP. The new algorithm that employs the a priori clutter and thermal noise covariance information is evaluated using two clutter models: 1) a mismatched GCM, and 2) the high-fidelity Research Laboratory STAP clutter model. For both clutter models, the new algorithm performed significantly better (i.e., converged faster) than the sample matrix inversion (SMI) and fast maximum likelihood (FML) STAP algorithms, the latter of which uses only information about the thermal noise covariance matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.