Abstract
The outlier detection technique is widely used in the data analysis for the clustering of data. Many techniques have been applied in the outlier detection to increase the efficiency of the data analysis. The Local Projection based Outlier Detection (LPOD) method effectively identifies neighbouring values of data, but this has the drawback of random selection of the cluster centre that affects the overall clustering performance of the system. In this study, the Adaptive Clustering by Fast Search and Find of Density Peak (ACFSFDP) is proposed to select the clustering centre and density peak. This ACFSFDP method is implemented with the min-max algorithm to find the number of categories that measured the local density and distance information. The density and distance are used to select the cluster centre, but density is not calculated on the existing distance based clustering techniques. The ACFSFDP method calculates cluster centre based on the density and distance during the clustering process, whereas the existing techniques randomly select the data centre. The results indicated that the ACFSFDP method is provided effective outlier detection compared with existing Clustering by Fast Search and Find of Density Peak (CFSFDP) methods. The ACFSFDP is tested on two datasets Pen-digits and waveform datasets. The experiment results proved that Area Under Curve (AUC) of the ACFSFDP is 99.08% on the Pen-Digit dataset, while the existing distance classifier method k-Nearest Neighbour has achieved 68.7% of AUC.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have