Abstract
Outlier detection has attracted considerable interest in various areas. Existing outlier detection methods usually assume independence of the modeling errors among the data points but this assumption does not hold in a number of applications. In this paper we propose a probabilistic method for outlier detection and robust updating of linear regression problems involving correlated data. First, suspicious data points will be identified using the minimum volume ellipsoid method and the maximum trimmed likelihood method. Then, the outlierness of each suspicious data point will be determined according to the proposed outlier probability in consideration of possible correlation among the data points. The proposed method is assessed and validated through simulated and real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.