Abstract

We analyze Einstein's vacuum field equations in generalized harmonic coordinates on a compact spatial domain with boundaries. We specify a class of boundary conditions, which is constraint-preserving and sufficiently general to include recent proposals for reducing the amount of spurious reflections of gravitational radiation. In particular, our class comprises the boundary conditions recently proposed by Kreiss and Winicour, a geometric modification thereof, the freezing-Ψ0 boundary condition and the hierarchy of absorbing boundary conditions introduced by Buchman and Sarbach. Using the recent technique developed by Kreiss and Winicour based on an appropriate reduction to a pseudo-differential first-order system, we prove well posedness of the resulting initial-boundary value problem in the frozen coefficient approximation. In view of the theory of pseudo-differential operators, it is expected that the full nonlinear problem is also well posed. Furthermore, we implement some of our boundary conditions numerically and study their effectiveness in a test problem consisting of a perturbed Schwarzschild black hole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.