Abstract

Cauchy problems for Einstein's conformal vacuum field equations are reduced to Cauchy problems for first order quasilinear symmetric hyperbolic systems. The “hyperboloidal initial value” problem, where Cauchy data are given on a spacelike hypersurface which intersects past null infinity at a spacelike two-surface, is discussed and translated into the conformally related picture. It is shown that for conformal hyperboloidal initial data of classH S,s≧4, there is a unique (up to questions of extensibility) development which is a solution of the conformal vacuum field equations of classH S. It provides a solution of Einstein's vacuum field equations which has a smooth structure at past null infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.