Abstract

In this work, we combine outer-approximation (OA) and bundle method algorithms for dealing with mixed-integer non-linear programming (MINLP) problems with nonsmooth convex objective and constraint functions. As the convergence analysis of OA methods relies strongly on the differentiability of the involved functions, OA algorithms may fail to solve general nonsmooth convex MINLP problems. In order to obtain OA algorithms that are convergent regardless the structure of the convex functions, we solve the underlying OA’s non-linear subproblems by a specialized bundle method that provides necessary information to cut off previously visited (non-optimal) integer points. This property is crucial for proving (finite) convergence of OA algorithms. We illustrate the numerical performance of the given proposal on a class of hybrid robust and chance-constrained problems that involve a random variable with finite support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.