Abstract
In this paper a comparison of some of the methods available for solving mixed integer non-linear programming (MINLP) problems is presented. Since some methods solve both a mixed integer linear programming (MILP) master problem and non-linear programming (NLP) subproblems during the iterations, while others only solve MILP master problems, a comparison of the computer resources needed for the optimization is presented. The methods are applied on a number of significant chemical engineering problems involving both MINLP problems (with a variety in the degree of discreteness and complexity) and some strict integer non-linear programming (INLP) problems. From the results, it is to be seem that a comparison of only the number of iterations needed in the optimization, doesn't allways measure the actual required resources of optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.