Abstract

PurposeTo quantify the whole-body-dose delivered during the application of new techniques and compare them to the results obtained by treatment planning systems. The ultimate goal being the use of planning data in combination with complication data to assess the impact of low doses of ionizing radiation. MethodsA film technique using gafchromic films to assess low doses was used on simplified phantoms and compared to data from treatment planning systems as well as a simplified whole body dose calculation system (Peridose). The types of treatment include open fields, intensity modulated radiation therapy (IMRT) and volumetric arc treatments. The film measurements were confirmed using TLDs in Alderson phantoms. In addition neutron contributions were measured as these are not taken into account in the current modern treatment planning systems, but can add significantly to the patient’s whole body dose. ResultsDose outside of the treatment plane diminished to 1% of the prescribed dose, this for open fields, IMRT and rotational treatments alike. Noteworthy was an increase at about 20cm from the central plane in IMRT, and in a more limited fashion for volumetric modulated arc treatment. In open fields this was not observed. Treatment planning systems were good at determining the out-of-field doses of single field treatments. In complex plans the TPS underestimated the dose to the patient. At distances greater than 20cm from the field edge, these systems did not predict any dose. The Peridose program performed well in the case of classical treatments. In the case of IMRT treatments, the overall evolution of the dose as a function of the distance to the field was well-modeled. However, an over estimation of the order of 60–80% was observed, leaving the possibility for a corrective factor based on a point measurement. Dose levels over the whole body were of the order 100mGy or higher over a complete treatment for the more complex treatments. Neutron dose levels were of the order single digit mSv for 10MV treatments. For 18MV the level of neutron contribution was in agreement with recent publications, corroborating reports that the dose from neutrons is lower than previously reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.