Abstract

Genetic relationships between human groups were first studied by comparisons of relative allele frequency at multiple loci. Geographical study of detailed, highly resolved trees of single, non-recombining uniparental loci (mitochondrial DNA: mtDNA and Y chromosome/non-recombining Y: NRY), following specific lineages rather than populations, then revolutionized knowledge of the peopling of the world, although, curiously, the use of geographically highly specific mutations that protect against malaria, found on individual autosomal globin genes, were first in single-locus phylogeography. mtDNA, with its high single nucleotide polymorphism (SNP) mutation rates and relative ease of dating, led the way and gave stronger proof of the recent near replacement of all human species by anatomically modern humans (AMH). AMH left Africa via a single southern exit about 70 000 years ago and rapidly spread around the Indian Ocean towards the Antipodes, long before a small branch left a South Asian colony, earlier on the trail, to populate Europe. The worldwide skeleton phylogeny of mtDNA is fully resolved, but a regional analysis will continue to illuminate subsequent migrations. NRY with a lower SNP mutation rate still has a dating problem relating to use the of single tandem repeats (STRs), but has validated mtDNA results and with more geographical specificity and genomic size, as with the autosomal human genome, has much more detail to offer for the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.