Abstract

The potential of transferring herbicide resistance from transgenic rice (Oryza sativa L.) varieties to sexually compatible weeds is of paramount importance for development of effective weed control strategies. The objective of this research was to determine the genetic control and frequency of natural outcrossing between a transgenic, glufosinate-resistant rice line and a Louisiana biotype of red rice (Oryza sativa L.). Molecular and phenotypic data showed that outcrossing in field plots between a non-transgenic purple marker line and red rice did occur within one field season, but at a low rate of <1%. Similarly, molecular and phenotypic data demonstrated that glufosinate resistance was transferred from the transgenic line to the red rice biotype in the field within one year at a low frequency of 0.3%. Compared to parental lines, the transgenic-red rice hybrids were extremely late, tall, and never set seed during the normal field season. Genetic analyses in all F2 populations showed glufosinate resistance behaved in a Mendelian fashion as a single, dominant gene. Presence of the bar gene for glufosinate resistance did not increase fitness or seed fecundity in hybrids or subsequent progeny. The genetic analyses and outcrossing results from this study suggest that an effective management program can be developed to prolong the usefulness of transgenic, glufosinate herbicide technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.