Abstract
Diastolic dysfunction is a major feature of hypertrophic cardiomyopathy (HCM). Data from patient tissue and animal models associate increased Ca2+ sensitivity of myofilaments with altered Na+ and Ca2+ ion homeostasis in cardiomyocytes with diastolic dysfunction. In this study, we tested the acute effects of ouabain on ventricular myocytes of an HCM mouse model. The effects of ouabain on contractility and Ca2+ transients were tested in intact adult mouse ventricular myocytes (AMVMs) of Mybpc3-targeted knock-in (KI) and wild-type (WT) mice. Concentration-response assessment of contractile function revealed low sensitivity of AMVMs to ouabain (10 μM) compared to literature data on human cardiomyocytes (100 nM). Three hundred μM ouabain increased contraction amplitude (WT ~1.8-fold; KI ~1.5-fold) and diastolic intracellular Ca2+ in both WT and KI (+12–18%), but further decreased diastolic sarcomere length in KI cardiomyocytes (−5%). Western Blot analysis of whole heart protein extracts revealed 50% lower amounts of Na+/K+ ATPase (NKA) in KI than in WT. Ouabain worsened the diastolic phenotype of KI cardiomyocytes at concentrations which did not impair WT diastolic function. Ouabain led to an elevation of intracellular Ca2+, which was poorly tolerated in KI showing already high cytosolic Ca2+ at baseline due to increased myofilament Ca2+ sensitivity. Lower amounts of NKA in KI could amplify the need to exchange excessive intracellular Na+ for Ca2+ and thereby explain the general tendency to higher diastolic Ca2+ in KI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.