Abstract
This paper is devoted to computational modelling of tsunami wave propagation and runup to the shore for some points on the Russian, Turkish, Bulgarian and Ukrainian coasts of the Black Sea. The nonlinear long wave model was used to solve the problem of wave propagation from hydrodynamic tsunami sources, which can constitute the greatest potential danger for the studied coast areas. The hydrodynamic sources were set in the form of an elliptical elevation, the parameters of which were chosen according to the sea level response to an underwater earthquake of magnitude 7. All the sources were located in seismically active areas, where tsunamigenic earthquakes had already occurred, along the 1500 m isobath. Near each of the studied points in the area above 300 m depths, we calculated marigrams, i.e. time-series of sea level fluctuations caused by the passage of waves. Then, a one-dimensional problem of tsunami propagation and run-up on the coast was solved for each of the points under study, where the obtained marigrams were used as boundary conditions. Peculiarities of tsunami wave propagation have been shown depending on the bottom and land relief in the studied areas of the Black Sea. Estimates have been obtained of the sea level maximum rise and fall during surge and subsequent coastal drainage for the characteristic scales of relief irregularity at different points. For possible tsunamigenic earthquakes, the largest splashes may occur in the region of Yalta (2.15 m), Cide (1.9 m), Sevastopol (1.4 m), and Anapa (1.4 m). Tsunami propagation in the Feodosiya and Varna coastal areas is qualitatively similar, with maximum wave heights of 0.64 m and 0.46 m, respectively. The coastlines of Evpatoriya (0.33 m) and Odessa (0.26 m) are least affected by tsunami waves due to the extended shelf.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have