Abstract

We introduce the concept of exponentially $s$-convexity in the second sense on a time scale interval. We prove among other things that if $f: [a, b]\to \mathbb{R}$ is an exponentially $s$-convex function, then \begin{align*} &\frac{1}{b-a}\int_a^b f(t)\Delta t\\ &\leq \frac{f(a)}{e_{\beta}(a, x_0) (b-a)^{2s}}(h_2(a, b))^s+\frac{f(b)}{e_{\beta}(b, x_0) (b-a)^{2s}}(h_2(b, a))^s, \end{align*} where $\beta$ is a positively regressive function. By considering special cases of our time scale, one can derive loads of interesting new inequalities. The results obtained herein are novel to best of our knowledge and they complement existing results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.