Abstract

<abstract><p>In this paper, we prove Hermite-Hadamard inequality for convex functions in the framework of $ \mathfrak{h} $-calculus. We also use the notions of $ \mathfrak{h} $-derivative and $ \mathfrak{h} $-integral to prove Ostrowski's and trapezoidal type inequalities for bounded functions. It is also shown that the newly established inequalities are the generalization of the comparable inequalities in the literature. Finally, using some examples, we demonstrate the validity of newly formed inequalities and show how they can be used to special means of real numbers.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.