Abstract
BackgroundSe-methylselenocysteine (MSC) is a naturally occurring organoselenium compound that inhibits mammary tumorigenesis in laboratory animals and in cell culture models. Previously we have documented that MSC inhibits DNA synthesis, total protein kinase C and cyclin-dependent kinase 2 kinase activities, leading to prolonged S-phase arrest and elevation of growth-arrested DNA damage genes, followed by caspase activation and apoptosis in a synchronized TM6 mouse mammary tumor model. The aim of the present study was to examine the efficacy of MSC against TM6 mouse mammary hyperplastic outgrowth (TM6-HOG) and to determine in vivo targets of MSC in this model system.MethodsTwenty mammary fat pads each from female Balb/c mice transplanted with TM6-HOG and fed with 0.1 ppm selenium and with 3 ppm selenium respectively, were evaluated at 4 and 12 weeks after transplantation for growth spread, proliferative index and caspase-3 activity. Thirteen mice transplanted with TM6-HOG in each selenium group were observed for tumor formation over 23 weeks. Tumors from mice in both groups were compared by cDNA array analysis and data were confirmed by reverse transcription–polymerase chain reaction. To determine the effect of MSC on the expression of the novel target gene and on cell migration, experiments were performed in triplicate.ResultsA dietary dose of 3 ppm selenium significantly reduced the growth spread and induced caspase-3 activity in mammary fat pads in comparison with mice fed with the basal diet (0.1 ppm selenium). The extended administration (23 weeks) of 3 ppm selenium in the diet resulted in a tumor incidence of 77% in comparison with 100% tumor incidence in 0.1 ppm selenium-fed animals. The size of TM6 tumors in the supplemented group was smaller (mean 0.69 cm2) than in the mice fed with the basal diet (mean 0.93 cm2). cDNA array analysis showed a reduced expression of osteopontin (OPN) in mammary tumors of mice fed with the 3 ppm selenium diet in comparison with OPN expression in tumors arising in 0.1 ppm selenium-fed mice. A 24-hour treatment of TM6 cells with MSC significantly inhibited their migration and also reduced their OPN expression in comparison with untreated cells.ConclusionsOPN is a potential target gene in the inhibition of mammary tumorigenesis by selenium.
Highlights
Se-methylselenocysteine (MSC) is a component of selenized brewer's yeast that has been successfully used to reduce overall cancer mortality by more than 40% in a human clinical intervention [1]
A dietary dose of 3 ppm selenium significantly reduced the growth spread and induced caspase-3 activity in mammary fat pads in comparison with mice fed with the basal diet (0.1 ppm selenium)
The size of TM6 tumors in the supplemented group was smaller than in the mice fed with the basal diet. cDNA array analysis showed a reduced expression of osteopontin (OPN) in mammary tumors of mice fed with the 3 ppm selenium diet in comparison with OPN expression in tumors arising in 0.1 ppm selenium-fed mice
Summary
Se-methylselenocysteine (MSC) is a component of selenized brewer's yeast that has been successfully used to reduce overall cancer mortality by more than 40% in a human clinical intervention [1]. We have shown in a synchronized TM6 mouse mammary tumor cell model that MSC inhibits DNA synthesis and total protein kinase C activity, causes S-phase arrest of these cells, reduces cyclin-dependent kinase 2 kinase activity, and induces growth-arrested DNA damage genes [7,8]. We have documented that MSC inhibits DNA synthesis, total protein kinase C and cyclin-dependent kinase 2 kinase activities, leading to prolonged S-phase arrest and elevation of growth-arrested DNA damage genes, followed by caspase activation and apoptosis in a synchronized TM6 mouse mammary tumor model. The aim of the present study was to examine the efficacy of MSC against TM6 mouse mammary hyperplastic outgrowth (TM6-HOG) and to determine in vivo targets of MSC in this model system
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have