Abstract
Osteopontin (OPN) gene expression and alkaline phosphatase activity were evaluated in the epiphyseal growth plates of normal chickens and in diet-induced tibial dyschdroplasia (TD)-afflicted chickens. In the normal growth plate, OPN gene was expressed by a) cells of the subperichondrial zone surrounding the articular cartilage, b) a narrow layer of hypertrophic chondrocytes at the hypertrophic zone, and c) lower hypertrophic chondrocytes at the zone of matrix calcification and endochondral bone formation. The latter two layers were separated by OPN-negative chondrocytes. Osteopontin gene was not expressed throughout the zone of articular cartilage in the nonhypertrophic or upper hypertrophic portions of the growth plate cartilage. Only at sites of calcification of the lower hypertrophic zone was the expression of the OPN gene associated with alkaline phosphatase activity. In all TD lesions, regardless of the induction procedure, the layer of chondrocytes of the lower hypertrophic zone expressing the OPN gene and the layer of OPN-negative cells separating the two areas of OPN-expressing cells were grossly enlarged. This resulted in a wide discontinuity between the chondrocytes of the lower hypertrophic zone expressing the OPN gene and the cells expressing the OPN gene that are associated with mineralization. In TD, no alkaline phosphatase activity was detected within the growth plate cartilage, but normal OPN gene expression was observed at the subperichondrium zone and at the zone of endochondral bone formation. The results of this study suggest that in the epiphyseal growth plate, OPN expression is not restricted to sites of bone calcification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.