Abstract
Photobiomodulation (PBM) is a technique that harnesses non-ionizing light at specific wavelengths, triggering the modulation of metabolic pathways, engendering favourable biological outcomes that reduce inflammation and foster enhanced tissue healing and regeneration. PBM holds significant promise for bone tissue applications due to its non-invasive nature and ability to stimulate cellular activity and vascularization within the healing framework. Notwithstanding, the impact of PBM on bone functionality remains largely undisclosed, particularly in the absence of influencing factors such as pathologies or regenerative therapies. This study aims to investigate the potential effects of PBM using red (660 nm) (RED) and near-infrared (808 nm) (NIR) wavelengths within an ex vivo bone culture system - the organotypic embryonic chicken femur model. A continuous irradiation mode was used, administering a total energy dose of 1.0 J, at an intensity of 100 mW for 10 s, which was repeated four times over the course of the 11-day culture period. The primary focus is on characterizing the expression of pivotal osteoblastic genes, the maturation and deposition of collagen, and the formation of bone mineral. Exposing femora to both RED and NIR wavelengths led to a notable increase in the expression of osteochondrogenic transcription factors (i.e., SOX9 and RUNX2), correlating with enhanced mineralization. Notably, NIR irradiation further elevated the expression of bone matrix-related genes and fostered enhanced deposition and maturation of fibrillar collagen. This study demonstrates that PBM has the potential to enhance osteogenic functionality within a translational organotypic bone culture system, with the NIR wavelength showing remarkable capabilities in augmenting the formation and maturation of the collagenous matrix.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have