Abstract

In bone tissue engineering, angiogenesis is closely associated with osteogenesis where reciprocal interactions between endothelial and osteoblast cells play an important role in bone regeneration. Over-expression of the angiogenesis-related gene due to a higher dose of vascular endothelial growth factor (VEGF) protein can inhibit osteogenesis process at mRNA level. To study the effect of controlled released of the VEGF protein incorporating fibrin glue (FG) treated with fabricated porous biphasic calcium phosphate (BCP) on osteogenesis gene (BMP-2) and angiogenesis gene (VEGF) on dental stem cells (DSCs) at mRNA level. DSCs were treated with two different modalities; VEGF protein incorporated FG, and VEGF protein incorporated FG added-BCP treated media. The cells were harvested at four different time intervals (day 3, day 7, day 10 and day 14) and were subjected to RNA isolation using the RNA extraction kit. This was followed by performing one step-reverse transcriptase-PCR (RT-PCR) to amplify the osteogenesis BMP-2 gene, angiogenesis VEGF gene and the osteoblast- specific transcription factor expression Osterix (Osx) with and without the controlled release of VEGF protein. The RT-PCR products were then electrophoresed. The gel image was captured using Image Analyser. Controlled release of VEGF protein using FG as a natural delivery system, using a single growth factor, show a significantly enhanced osteogenesis BMP-2 gene and angiogenesis VEGF gene with a high expression of Osx compare with non-delivered free VEGF protein treated groups. FG is a biocompatible material that could be employed as a delivery vehicle for controlled release of VEGF protein single or dual release in bone tissue engineering strategy and design of the study. Application of this method for using FG is mixing with a porous ceramic scaffold loading with the growth factors is a convenient and promising strategy for improving osteogenesis and angiogenesis processes of reconstruction critical-sized bone defects and might change the scope of modern surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.