Abstract
Nanocrystalline hydroxyapatite (HAp) was synthesized from biowaste eggshells through sonication followed by the heat treatment. Calcium oxide as a precursor moiety for the synthesis of HAp was obtained through the heat treatment of eggshells at 900°C for 3 hr. The prepared HAp was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The appearance of the FTIR absorption peaks in between at 516-1031 and 3,636 cm-1 shows phosphate and hydroxyl groups in prepared HAp, respectively. The XRD-patterns indicate the formation of HAp started within 5 min of sonication. The SEM morphologies suggested that the synthesized HAp was highly crystalline and compact. We tested the elemental analysis of the synthesized HAp through X-ray fluorescence spectroscopy and inductively coupled plasma mass spectroscopy. The higher Ca/P ratio has observed in heat-treated HAp. These results show that heat treatment facilitates the formation of highly crystalline and compact HAp. Cytotoxicity and osteogenic potential of human mesenchymal stem cells (hMSCs) were also evaluated in the presence of HAp. No significant cytotoxicity was noted in the presence of HAp, suggested their biocompatibility. Enhanced osteogenesis of hMSCs occurred with HAp powder, confirming the feasibility in the treatment of osteogenesis. Thus, synthesized HAp has the potential to use a biomaterial in tissue engineering applications for bone tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.