Abstract

Human mesenchymal stem cells (hMSCs) differentiate down an osteogenic pathway with appropriate mechanical and/or chemical stimuli. This study describes the successful culture of hMSCs in 3D collagen matrices under mechanical strain. Bone marrow-derived hMSCs were seeded in linear 3D type I collagen matrices and subjected to 0%, 10%, or 12% uniaxial cyclic tensile strain at 1 Hz for 4 h/day for 7 or 14 days. Cell viability studies indicated that hMSCs remained viable throughout the culture period irrespective of the applied strain level. Real-time RT-PCR studies indicated a significant increase in BMP-2 mRNA expression levels in hMSCs strained at 10% compared to the same day unstrained controls after both 7 and 14 days. An increase in BMP-2 was also observed in hMSCs subjected to 12% strain, but the increase was significant only in the 14-day sample. This is the first report of the culture of bone marrow-derived hMSCs in 3D collagen matrices under cyclic strain, and the first demonstration that strain alone can induce osteogenic differentiation without the addition of osteogenic supplements. Induction of bone differentiation in 3D culture is a critical step in the creation of bioengineered bone constructs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.