Abstract

Carbon scaffolds with a directional patterned surface were obtained by pyrolysis of the sea rush Juncus maritimus. The structure of the scaffolds was investigated using scanning electron microscopy, mercury porosimetry and interferometric profilometry. X-ray diffraction and x-ray fluorescence were the techniques used for their chemical characterization. The alignment and differentiation of pre-osteoblasts (MC3T3-E1 cell line) incubated on the patterned scaffolds were evaluated by scanning electron microscopy, confocal laser scanning microscopy and by the quantification of the phosphatase alkaline activity and the osteocalcin synthesis. It was found that pyrolysis at 500 °C preserved and even enhanced the natural macro- and micro-patterning of the plant. The results obtained for porosity and chemical composition validated these structures as viable scaffolds for tissue engineering applications. Finally, the patterned surface was confirmed to promote the oriented growth of the pre-osteoblasts MC3T3-E1, not only after short periods of incubation (hours) but also after longer ones (several weeks). The quantification of the cell differentiation markers together with the evaluation of the cell layer morphology up to 28 days of incubation confirmed the differentiation of MC3T3-E1 cells to osteoblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call