Abstract

Due to its good mechanical and biochemical properties and, also, because of its unique interconnected porosity, bio-inspired silicon carbide (bioSiC) can be considered as a promising material for biomedical applications, including controlled drug delivery devices and tissue engineering scaffolds. This innovative material is produced by molten-Si infiltration of carbon templates, obtained by controlled pyrolysis of vegetable precursors. The final SiC ceramic presents a porous-interconnected microstructure that mimics the natural hierarchical structure of bone tissue and allows the internal growth of tissue, as well as favors angiogenesis. In the present work, the in vitro cytocompatibility of the bio-inspired SiC ceramics obtained, in this case, from the tree sapelli (Entandrophragma cylindricum) was evaluated. The attachment, spreading, cytoskeleton organization, proliferation, and mineralization of the preosteoblastic cell line MC3T3-E1 were analyzed for up to 28 days of incubation by scanning electron microscopy, interferometric profilometry, confocal laser scanning microscopy, MTT assay, as well as red alizarin staining and quantification. Cells seeded onto these ceramics were able to attach, spread, and proliferate properly with the maintenance of the typical preosteoblastic morphology throughout the time of culture. A certain level of mineralization on the surface of the sapelli-based SiC ceramics is observed. These results demonstrated the cytocompatibility of this porous and hierarchical material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call