Abstract
Poly(ε-caprolactone fumarate) (PCLF) scaffold formulations were assessed as a delivery system for recombinant human bone morphogenetic protein (rhBMP-2) for bone tissue engineering. The formulations included PCLF with combinations of poly(vinyl alcohol) (PVA) and hydroxyapatite (HA). The assessments included in vitro and in vivo assays. In vitro assays validated cell attachment using a pre-osteoblast cell line (MC3T3-E1). Additionally, in vitro release profiles of rhBMP-2 from PCLF scaffolds were determined up to 21 days. The data suggested that PCLF incorporated with PVA and HA accelerated rhBMP-2 release and that the released protein was bioactive. For the in vivo study, a critical-sized defect (CSD) model in rabbit calvaria was used to test PCLF scaffolds. At 6 weeks post-implantation, significantly more bone formation was measured in PCLF scaffolds containing rhBMP-2 than in scaffolds without rhBMP-2. In conclusion, we demonstrated that PCLF delivered biologically active rhBMP-2, promoted bone healing in a CSD and has potential as a bone tissue engineering scaffold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.