Abstract

Mass transfer of apple cylinders during osmotic dehydration was quantitatively investigated under continuous medium flow conditions. The influences of the main process variables (solution concentration, operation temperature, contact time, and solution flow rate) were determined. A second-order polynomial regression model was used to relate weight reduction (WR), moisture loss (ML), solids gain (SG), and mass diffusivity (D m and D s ) to process variables. The conventional diffusion model using a solution of Fick's unsteady state law involving a finite cylinder was applied for moisture diffusivity and solute diffusivity determination. Diffusion coefficients were in the range of 10−9–10−10 m2/s, and moisture diffusivity increased with temperature and flow rate, increased with solution concentration (> 50°Brix), and decreased with increasing solution concentration (< 50°Brix), but solids diffusivity increased with temperature and concentration and decreased with increasing flow rate. A continuous-flow osmotic dehydration (CFOD) contactor was developed to be a more efficient process in terms of osmotic dehydration efficiency: time to reach certain weight reduction (T w ) and moisture loss (T m ) were shorter than that of conventional osmotic (COD) dehydration processes. Effectiveness evaluation functions used in this study could be widely applied to osmotic dehydration system evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call