Abstract
Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential (Ψ(L)), osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance (g (S)) across species throughout the year, and assessed tissue damage by subzero temperatures during winter. Species behavior was highly dependent on rooting depth. Substantial osmotic adjustment (up to 1.2MPa) was observed in deep-rooted species exhibiting relatively small seasonal variations in Ψ(L) and with access to a more stable water source, but having a large difference between predawn and midday Ψ(L). On the other hand, shallow-rooted species exposed to large seasonal changes in Ψ(L) showed limited osmotic adjustment and incomplete stomatal closure, resulting in turgor loss during periods of drought. The bulk leaf tissue elastic modulus (ε) was lower in species with relatively shallow roots. Daily variation in g (S) was larger in shallow-rooted species (more than 50% of its maximum) and was negatively associated with the difference between Ψ(L) at the turgor loss point and minimum Ψ(L) (safety margin for turgor maintenance). All species increased ε by about 10MPa during winter. Species with rigid tissue walls exhibited low leaf tissue damage at -20°C. Our results suggest that osmotic adjustment was the main water relationship adaptation to cope with drought during summer and spring, particularly in deep-rooted plants, and that adjustments in cell wall rigidity during the winter helped to enhance freezing tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.