Abstract
The intracellular concentrations of low-molecular weight carbohydrates and quaternary ammonium compounds present in 26 axenic isolates of unicellular cyanobacteria have been studied over a range of external salinity from freshwater up to 300% seawater (100%=35‰ S). In all cases, a single carbohydrate, either sucrose or glucosylglycerol, was identified as the principal organic osmoticum, showing major variation in response to the external salt concentration; quaternary ammonium compounds were present in osmotically insignificant amounts. Glucosylglycerol was accumulated as primary osmoticum by nine of the isolates from saline habitats and by five of the freshwater isolates; trace amounts of sucrose were also prsent. The remaining twelve freshwater strains accumulated sucrose as sole osmoticum. Glucosylglycerol-accumulating strains grew over the widest salinity range (up to 200 to 250% seawater), whether isolated from saline or non-saline habitats. Sucrose-accumulating strains were more stenohaline, growing only in up to 50 to 100% seawater and showing no sustained growth in hypersaline media (>100% seawater). The data suggest that (1) glycosylglycerol accumulation is not unique to marine cyanobacteria, and (2) the upper salinity limit for growth may be linked to organic solute accumulation, rather than habitat, with glucosylglycerol-accumulating isolates having a greater potential for growth in salt-stressed conditions than sucrose accumulators.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have