Abstract

Copper (Cu) is an essential micronutrient for humans, but excessive Cu in rice grains causes health risks. Currently, the mechanisms underlying Cu accumulation in rice are unclear. Here, we identified a novel member of the high-affinity copper transporter (Ctr)-like (COPT) protein family in rice, OsCOPT7, which controls Cu accumulation in rice grains. Mutation in the coding sequence of OsCOPT7 (mutant lc1) leads to inhibition of Cu transport through the xylem, contributing to lower Cu concentrations in the grain of lc1. Knockout or modulation of the expression of OsCOPT7 significantly impacts Cu transportation in the xylem and its accumulation in rice grains. OsCOPT7 localizes at the multi-pass membrane in the cell and the gene is expressed in the exodermis and stele cells, facilitating Cu loading into the xylem. OsCOPT7 expression is upregulated under Cu deficiency and in various organs, implying its contribution to Cu distribution within the rice plant. The variable expression pattern of OsCOPT7 suggests that OsCOPT7 expression responds to Cu stress in rice. Moreover, assays reveal that OsCOPT7 expression level is suppressed by the SQUAMOSA promoter-binding protein-like 9 (OsSPL9) and that OsCOPT7 interacts with Antioxidant Protein1 (OsATX1). This study elucidates the involvement of OsCOPT7 in Cu loading into the xylem, its subsequent distribution within the rice plant, and the potential of this protein in reducing the risk of high Cu concentrations in rice grain grown on Cu-contaminated soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.