Abstract

In this study, good dispersion status of graphite in a nonpolar, intractable polymer, i.e. polypropylene (PP), was realized in melt processing by using a specific dynamic packing injection molding (DPIM) technique. The exfoliation extent of graphite increased remarkably from the skin zone to the core zone of the molded part, as confirmed by combination of WAXD, SEM and TEM analyses, indicating an accelerated exfoliation occurred during the DPIM processing. This phenomenon is due to decreased melt flow channel and increased melt viscosity as the solidification takes place from the wall into the center, which leads to greatly increased shear force. The good dispersion of graphite results in obvious reinforcements of both tensile strength and impact strength by adding moderate amount of graphite. The present study proposes a promising route for realizing the large-scale fabrication of structural parts of polymer/exfoliated-graphite nanocomposites with excellent mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.