Abstract

AbstractIn this article, dynamic packing injection molding (DPIM) technology was used to prepare injection samples of Polypropylene‐Calcium Carbonate (PP/CaCO3) nanocomposites. Through DPIM, the mechanical properties of PP/nano‐CaCO3 samples were improved significantly. Compared with conventional injection molding (CIM), the enhancement of the tensile strength and impact strength of the samples molded by DPIM was 39 and 144%, respectively. In addition, the tensile strength and impact strength of the PP/nano‐CaCO3 composites molded by DPIM increase by 21 and 514%, respectively compared with those of pure PP through CIM. According to the SEM, WAXD, DSC measurement, it could be found that a much better dispersion of nano‐CaCO3 in samples was achieved by DPIM. Moreover, γcrystal is found in the shear layer of the DPIM samples. The crystallinity of PP matrix in DPIM sample increases by 22.76% compared with that of conventional sample. The improvement of mechanical properties of PP/nano‐CaCO3 composites prepared by DPIM attributes to the even distribution of nano‐CaCO3 particles and the morphology change of PP matrix under the influence of dynamic shear stress. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.