Abstract

In Rayleigh–Bénard convection, the size of a flow domain and its aspect ratio $\varGamma$ (a ratio between the spatial length and height of the domain) affect the shape of the large-scale circulation. For some aspect ratios, the flow dynamics includes a three-dimensional oscillatory mode known as a jump rope vortex (JRV); however, the effects of varying aspect ratios on this mode are not well investigated. In this paper, we study these aspect ratio effects in liquid metals, for a low Prandtl number ${{Pr}}=0.03$ . Direct numerical simulations and experiments are carried out for a Rayleigh number range $2.9 \times 10^4 \leq {{Ra}} \leq 1.6 \times 10^6$ and square cuboid domains with $\varGamma =2$ , $2.5$ , $3$ and $5$ . Our study demonstrates that a repeating pattern of a JRV encountered at aspect ratio $\varGamma \approx 2.5$ is the basic structural unit that builds up to a lattice of interlaced JRVs at the largest aspect ratio. The size of the domain determines how many structural units are self-organised within the domain; the number of the realised units is expected to scale as $\varGamma ^2$ with sufficiently large and growing $\varGamma$ . We find the oscillatory modes for all investigated $\varGamma$ ; however, they are more pronounced for $\varGamma =2.5$ and $5$ . Future studies for large-aspect-ratio domains of different shapes would enhance our understanding of how the JRVs adjust and reorganise at such scaled-up geometries, and answer the question of whether they are indeed the smallest superstructure units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call