Abstract

Binary liquid mixtures can show pronounced oscillations in the differential scanning calorimeter signal for the specific heat and in the turbidity when phase separation is induced by continuously ramping the temperature. For a fixed ramp rate, i.e., a linear temporal drift of temperature, only a small number of oscillations have been observed. In the present manuscript we describe an experimental setup where simultaneous video-microscopy and shadow-graph measurements can be performed on mixtures subjected to an arbitrary temporal temperature evolution. In particular, it can be adjusted to fix the thermodynamic driving force, which characterizes the rate of change of the composition of the coexisting phases. With this novel technique both the number of oscillations and the temperature interval where oscillations are observed increase significantly. This technique can easily be applied to a great variety of binary mixtures, permitting detailed investigations of their phase-separation kinetics under slowly ramping temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.