Abstract
Frictional granular matter is shown to be fundamentally different in its plastic responses to external strains from generic glasses and amorphous solids without friction. While regular glasses exhibit plastic instabilities due to the vanishing of a real eigenvalue of the Hessian matrix, frictional granular materials can exhibit a previously unnoticed additional mechanism for instabilities, i.e., the appearance of a pair of complex eigenvalues leading to oscillatory exponential growth of perturbations that are tamed by dynamical nonlinearities. This fundamental difference appears crucial for the understanding of plasticity and failure in frictional granular materials. The possible relevance to earthquake physics is discussed.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have