Abstract
Selective attention is an important component of cognitive control and is essential for day-to-day functioning. The Simon task is a common test of visual selective attention that has been widely used to probe response selection, inhibition and cognitive control. However, to date, there is a dearth of literature that has focused on the oscillatory dynamics serving task performance in the selective attention component of this task. In this study, 32 healthy adults (mean age: 33.09 years, SD: 7.27 years) successfully completed a modified version of the Simon task during magnetoencephalography. All magnetoencephalographic data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and peak task-related neural activity was extracted to examine the temporal dynamics. Across both congruent and Simon conditions, our results indicated robust decreases in alpha (8-12 Hz) activity in the bilateral occipital regions and cuneus during task performance, while increases in theta (3-6 Hz) oscillatory activity were detected in regions of the dorsal frontoparietal attention network, including the dorsolateral prefrontal cortex, frontal eye fields and insula. Lastly, whole-brain condition-wise analyses showed Simon interference effects in the theta range in the superior parietal region and the alpha range in the posterior cingulate and inferior frontal cortices. These findings provide network-specific insights into the oscillatory dynamics serving visual selective attention.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have