Abstract
The trans-azobenzene molecule is thought to prefer a planar C2h geometry, in gas phase as well as in solution, according to the most recent computational studies. As a consequence, the weak n-->pi* absorption band is forbidden by symmetry at the equilibrium geometry, and its intensity depends on the effect of the vibrational motions on the electronic structure. In this computational study, we determine the contribution of the vibrational modes to the oscillator strength, taking into account the anharmonicity, the thermal distributions, and the solvent effects. The good agreement of our results with the measured absorption spectrum confirms the C2h equilibrium structure of trans-azobenzene, with a relatively easy torsion of the phenyl groups around the N--C bonds. We also address the question of the polarization of this transition, which is a preliminary step to interpret the time-resolved fluorescence anisotropy measurements [C.-W. Chang et al., J. Am. Chem. Soc., 126, 10109 (2004)], a very sensitive probe of solvent effects on the excited state dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.