Abstract

We have examined the electronic and molecular structure of 3,7-diaminophenothiazin-5-ium dye (thionine) in the electronic ground state and in the lowest excited states. The electronic structure was calculated using a combination of density functional theory and multi-reference configuration interaction (DFT/MRCI). Equilibrium geometries were optimized employing (time-dependent) density functional theory (B3LYP functional) combined with the TZVP basis set. Solvent effects were estimated using the COSMO model and micro-hydration with up to five explicit water molecules. Our calculated electronic energies are in good agreement with experimental data. We find the lowest excited singlet and triplet states at the ground state geometry to be of π→π* (S(1), S(2), T(1), T(2)) and n→π* (S(3), T(3)) character. This order changes when the molecular structure in the electronically excited states is relaxed. Geometry relaxation has almost no effect on the energy of the S(1) and T(1) states (~0.02 eV). The relaxation effects on the energies of S(2) and T(2) are moderate (0.14-0.20 eV). The very small emission energy results in a very low fluorescence rate. While we were not able to locate the energetic minimum of the S(3) state, we found a non-planar minimum for the T(3) state with an energy which is very close to the energy of the S(1) minimum in the gas phase (0.04 eV above). When hydration effects are taken into account, the n→π* states S(3) and T(3) are strongly blueshifted (0.33 and 0.46 eV), while the π→π* states are only slightly affected (<0.06 eV).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call