Abstract

The transformation of neuronal input into patterns of action potential output, a key element of signal processing in the brain, is determined by the interaction between synaptic and intrinsic membrane properties. Traditional use of rectangular, ramp-like or sinusoidal waveforms to stimulate neurons has focussed attention on the role of intrinsic membrane properties and their modulation in determining repetitive firing behaviour. However, such studies do not address the role that dynamic features of endogenous synaptic inputs play in controlling output. Oscillations are prominent features of synaptic currents/potentials in many networks including those that provide rhythmic excitatory drive to motoneurons involved in behaviours such as locomotion and respiration [1,2,3]. Phrenic motoneurons (PMNs), for example, receive inspiratory currents of brainstem origin that oscillate with peak power in the 20–120 Hz bandwidth. These oscillations are ubiquitous throughout the respiratory network, in vivo [2,4] and in vitro [3,5], and although well-characterized, their function, if any, is not known. Using rhythmically active brainstem spinal cord preparations from neonatal rat and recently developed stimulation techniques [6], we explored the physiological significance to motor control of such oscillations by activating PMNs with native inspiratory synaptic currents that oscillate in the 20–50 Hz bandwidth. Action potentials arose predominantly from peaks of the current oscillations and the timing of spikes within trains was reproducible within 2%. Activation of neurons with low-pass filtered currents produced spike trains with considerably more variability; filtering also reduced the number of action potentials by 35%. Finally, the excitatory neuromodulator, phenylephrine, which significantly increased instantaneous firing frequency responses to filtered inspiratory or square-wave stimuli, had no effect on frequency evoked by endogenous (unfiltered) synaptic waveforms. Results indicate that oscillations in synaptic inputs generated by central respiratory circuits maximise neuronal output, and play a dominant role in controlling the timing of action potentials during behaviourally relevant repetitive firing, even in the presence of neuromodulators.

Highlights

  • To be effective, inspiratory muscles on the left and right sides must contract together

  • We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions

  • The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)

Read more

Summary

Introduction

Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.