Abstract
Abstract In this paper, new oscillation criteria for the third-order quasilinear neutral differential equation $$\left( {a\left( t \right)\left( {z''\left( t \right)} \right)^\gamma } \right)^\prime + q\left( t \right)x^\gamma \left( {\tau \left( t \right)} \right) = 0, t \geqslant t_0 ,$$ are established, where z(t) = x(t) + p(t)x(δ(t)), and γ is a ratio of odd positive integers. Those results extend the oscillation criteria due to Sun [SUN, Y. G.: New Kamenev-type oscillation criteria for second-order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341–351] to the equation, and complement the existing results in literature. Two examples are provided to illustrate the relevance of our main theorems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have