Abstract
Traditional understanding on the complex multiphysics phenomenon of the meniscus in the oscillating mold for continuously cast steel, including oscillation-mark formation and liquid-slag consumption, has never considered the shape influence of the flux channel between the mold wall and the solidifying shell surface. Based on the reciprocating oscillation of mold, this study was carried out to calculate theoretically the periodic pressure and the liquid-slag layer thickness in the flux channel for the upper and the lower meniscus that possess different shapes in combination with a transient equilibrium profile of the flux channel as well as the sinusoidal and the nonsinusoidal oscillation modes of mold. The effect of flux channel shape on the multiphysics phenomenon in the meniscus was determined by the physical oscillation simulation by using an experimental cold model mold. The results show that the shape difference between the upper and the lower meniscus leads to the opposite direction of pressure in the flux channel. The pressure in the opposite direction plays a respective role in oscillation-mark formation and liquid-slag consumption in an oscillation cycle of mold, and thus, it makes a new mechanism for explaining the multiphysics phenomenon in the meniscus. The oscillation mark is initially formed by the rapid increase of positive channel pressure in the upper meniscus, and most of the liquid slag is infiltrated into the flux channel by the negative channel pressure in the lower meniscus from the end of a positive strip time to the beginning of the next positive strip time, including the negative strip time in between. Furthermore, the physical characteristics of the lubrication behavior in the meniscus are summarized, including liquid-slag infiltration, solidifying shell deformation, and the thickness change of the liquid-slag layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.