Abstract

A mold simulator has been successfully used to study the initial solidification behavior of the molten low carbon steel. Coupled with 2D-IHCD calculation and PSD analysis, the variations of the responding temperatures and heat fluxes, as well as the relationship between shell surface profile, heat flux, shell thickness, mold level fluctuation, and the infiltrated slag film, were investigated in this article. The results suggested that the mold high-frequency temperatures and heat fluxes above liquid steel level vary with the oscillation of the mold, and show an opposite variation pattern as those below the shell tip. The formed shell surface profile is directly correlated to the variation of high-frequency heat fluxes, where the formation of oscillation mark is associated with a sudden increase of the heat flux during negative strip time. Mold level fluctuation contributes to the formation of the extra oscillation marks. The growth of shell thickness follows the square root law, and the instantaneous solidification factor is large near the shell tip and becomes small in the area where the deep shell surface depression is formed. The thickness of the slag film in between mold and shell is in the range of 1.4 to 2.46 mm, and the crystallization of mold flux in mold/shell gap is dynamic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call