Abstract

Comprehensive numerical and experimental analyses of the effect of temperature on cavitation oscillations are performed. In the experimental study, the oscillation of a laser-generated single cavitation bubble near a rigid boundary is obtained using a fiber-optic diagnostic technique based on optical beam detection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. And cavitation bubble tests are performed using water at different temperatures, and its temperature ranges from freezing point (0 °C) to near boiling. Furthermore, a modified Rayleigh–Plesset equation is derived for calculating the temporal development of the bubble radius at different temperatures. Both the experimental and the numerical results show that the maximum bubble radius and bubble lifetime both increase as temperature increases. The mechanism behind it has also been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call