Abstract

Wall jets are applied to reduce flow separation and recirculation of the airflow entering the inner space of a laboratory fume hood through its front opening. The flow separation in the hood was further reduced by introducing a self-induced oscillatory motion using fluidic oscillators. The design of the oscillators integrated in the predetermined contour are based on numerical simulations. The effect of the steady and unsteady wall jet was investigated experimentally using flow visualization, particle image velocimetry (PIV), and containment measurements. The oscillatory wall-jet led to reduction of flow separation and recirculation even at lower injection volume flows. In consequence, the usage of fluidic oscillators for a laboratory fume hood increases the energy efficiency of the system without reducing the safety of the laboratory fume hood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.