Abstract

NASA's re-purposed Kepler mission -- dubbed K2 -- has brought new scientific opportunities that were not anticipated for the original Kepler mission. One science goal that makes optimal use of K2's capabilities, in particular its 360-degree ecliptic field of view, is galactic archaeology -- the study of the evolution of the Galaxy from the fossil stellar record. The thrust of this research is to exploit high-precision, time-resolved photometry from K2 in order to detect oscillations in red giant stars. This asteroseismic information can provide estimates of stellar radius (hence distance), mass and age of vast numbers of stars across the Galaxy. Here we present the initial analysis of a subset of red giants, observed towards the North Galactic Gap, during the mission's first full science campaign. We investigate the feasibility of using K2 data for detecting oscillations in red giants that span a range in apparent magnitude and evolutionary state (hence intrinsic luminosity). We demonstrate that oscillations are detectable for essentially all cool giants within the $\log g$ range $\sim 1.9-3.2$. Our detection is complete down to $\mathit{Kp}\sim 14.5$, which results in a seismic sample with little or no detection bias. This sample is ideally suited to stellar population studies that seek to investigate potential shortcomings of contemporary Galaxy models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.