Abstract

We investigate the oscillating magnetocaloric effect on a diamagnetic nanoribbon, using the model of a quasi-one-dimensional electron gas (Q1DEG) made with a parabolic confinement potential. We obtained analytical expressions for the thermodynamic potential and for the entropy change. The entropy change exhibits the same dependence on field and temperature observed for other diamagnetic systems. The period of the field-oscillating pattern is ~0.1mT and the temperature of maximum entropy change is ~0.1K with an applied field of the order of 1T. An interesting feature of the results is the dependence of the oscillations with the strength of the confinement potential, as well as the possibility to provide a relationship among this last with nanoribbon width. In the limit of null confinement potential our expressions match those for the 2D diamagnetic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.